The Influence of Resveratrol on the Synovial Expression of Matrix Metalloproteinases and Receptor Activator of NF- B Ligand in Rheumatoid Arthritis Fibroblast-Like Synoviocytes

Mathias Glehr^{a,*}, Margherita Breisach^a, Sonja Walzer^b, Birgit Lohberger^a, Florentine Fürst^c, Joerg Friesenbichler^a, Beate Rinner^d, Alexander Avian^e, Reinhard Windhager^b, and Andreas Leithner^a

- Department of Orthopaedic Surgery, Medical University of Graz,
 Auenbruggerplatz 5, A-8036 Graz, Austria. E-mail: mathias.glehr@medunigraz.at
 Department of Orthopaedic Surgery, Medical University of Vienna,
 - Währinger Gürtel 18–20, A-1090 Wien, Austria
 ^c Department of Rheumatology, Medical University of Graz, Auenbruggerplatz 15, A-8036 Graz, Austria
 - d Center of Medical Research, Medical University of Graz, Stiftingtalstraße 24, A-8036 Graz, Austria
 - ^e Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, Austria
- * Author for correspondence and reprint requests
- Z. Naturforsch. **68 c**, 336–342 (2013); received July 30, 2012/May 21, 2013

Key words: Resveratrol, Rheumatoid Arthritis, Matrix Metalloproteinases

Medication of rheumatoid arthritis (RA) remains challenging and often controversial concerning side effects or long-term complications. We investigated the effect of resveratrol, a phytoalexin discussed for its chondro-protective and anti-inflammatory qualities, on the synovial expression of matrix-degrading enzymes like matrix metalloproteinases (MMPs) and bone-remodelling proteins in RA fibroblast-like synoviocytes (FLS). Interleukin-1 stimulated RA-FLS were treated with 100 µm resveratrol for 24 h. To evaluate the effect of resveratrol on the amount of bound/combined MMPs, a Luminex® xMAP multiplexing technology was used. The alteration in expression of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegrin (OPG) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Resveratrol reduced the expression of MMP-1 (p =0.022), MMP-3 (p = 0.021), and MMP-9 (p = 0.047). qRT-PCR showed a significant reduction in the relative abundance of the transcripts of OPG (p = 0.012) and RANKL (p = 0.018). Our in vitro findings indicate that resveratrol could be a new target for further pharmacological studies in the field of RA. In the future it could play a role as a possible substitute or supplement to currently used drugs against RA to prevent cartilage matrix degradation and pathological bone resorption due to inhibition of MMPs and RANKL.